Unendliche Teilbarkeit


Autoren der Wikimedia-Projekte

Article Images

Der Begriff der unendlichen Teilbarkeit (auch als unbeschränkte oder unbegrenzte Teilbarkeit bezeichnet) beschreibt in der Stochastik die Eigenschaft vieler Zufallsvariablen, sich als Summe einzelner unabhängiger Zufallsvariablen zerlegen zu lassen. Eingeführt wurde der Begriff 1929 durch den italienisch-österreichischen Mathematiker Bruno de Finetti. Er ist eng verwandt mit dem Begriff der Reproduktivität (aber nicht identisch, siehe weiter unten) und spielt vor allem in der Theorie der Lévy-Prozesse eine große Rolle.

Sei   ein Wahrscheinlichkeitsraum und   eine  -dimensionale Zufallsvariable darauf.   heißt unendlich teilbar auf diesem Wahrscheinlichkeitsraum, falls es für jedes   Zufallsvariablen   gibt mit

Besonders große Bedeutung kommt dem Konzept der unendlichen Teilbarkeit in folgenden beiden Teilgebieten der Stochastik zu:

Unendliche Teilbarkeit und Summen unabhängiger Zufallsvariablen

Bearbeiten

In der allgemeinen Summationstheorie für unabhängige Zufallsvariablen betrachtet man Folgen   von Zufallsvariablen, von denen jede eine Summe von endlich vielen unabhängigen und identisch verteilten Zufallsvariablen   ist. Dann gilt folgende Aussage:

Wenn keiner der Einzelsummanden   einen bedeutenden Einfluss auf die Summe hat (mathematisch formuliert als Bedingung der „unendlichen Kleinheit“   für jedes  , siehe auch Asymptotisch vernachlässigbares Schema), dann konvergieren die standardisierten Verteilungsfunktionen   gegen eine unendlich teilbare Verteilungsfunktion  .

Mit anderen Worten ist die Klasse der unendlich teilbaren Verteilungsfunktionen identisch mit der Klasse der Grenzverteilungen für Summen unabhängiger und identisch verteilter Zufallsvariablen. Diese Aussagen gehen zurück auf Kolmogorow und dessen Schüler Chintschin und Gnedenko.

Unendliche Teilbarkeit und Lévy-Prozesse

Bearbeiten

Für Zufallsvariablen   und   existiert genau dann ein Lévy-Prozess   mit Zuständen  , wenn die Zufallsvariable   unendlich teilbar ist. Dieses Resultat von Paul Lévy vereinfacht den Beweis von der Existenz der Brownschen Bewegung (erstmals bewiesen durch Norbert Wiener im Jahr 1923) dramatisch, da leicht gezeigt werden kann, dass die Normalverteilung unendlich teilbar ist.

  • Wie bereits erwähnt, ist jede normalverteilte Zufallsvariable unendlich teilbar: für   wähle unabhängige  . Damit sind die obigen Bedingungen erfüllt.
  • Es existieren auch diskrete unendlich teilbare Zufallsvariable: So ist die Poisson-Verteilung mit Parameter   unendlich teilbar: hier sind die unabhängigen Summanden   ebenfalls Poisson-verteilt mit Parameter  .
  • Man sieht schnell, dass die Bernoulli-Verteilung, charakterisiert durch   und   mit   nicht unendlich teilbar ist: Für   seien hierzu   und   die unabhängigen, identisch verteilten Summanden mit  . Falls diese trivial wären (d. h. falls sie nur einen Wert annehmen könnten), wäre die Summe ebenfalls trivial. Also müssen   und   mindestens zwei verschiedene Werte mit positiver Wahrscheinlichkeit annehmen, etwa  . Die Summe   würde dann aber mit jeweils positiver Wahrscheinlichkeit die drei paarweise verschiedenen Werte   und   annehmen und wäre demnach nicht Bernoulli-verteilt. Also können   und   nicht existieren. Analog lässt sich zeigen, dass eine nichttriviale Verteilung, die nur endlich viele Werte annimmt, nicht unendlich teilbar ist.
  • Mit etwas mehr Aufwand kann gezeigt werden, dass die stetige Gleichverteilung ebenfalls nicht unendlich teilbar ist.

Alternative Definitionen und kanonische Darstellungen

Bearbeiten

In der obigen Definition wurde vom Begriff der Zufallsvariablen ausgegangen. Sie lässt sich auf Verteilungsfunktionen übertragen, wenn man berücksichtigt, dass die Verteilungsfunktion einer Summe unabhängiger und identisch verteilter Zufallsgrößen die Faltung der Verteilungsfunktionen der Summanden ist:

Eine Verteilungsfunktion   ist genau dann unendlich teilbar, wenn für jedes   eine Verteilungsfunktion   existiert, so dass  , wobei   die  -fache Faltung bedeutet.

Betrachtet man noch die zugehörigen charakteristischen Funktionen und beachtet, dass die charakteristische Funktion einer Faltung das Produkt der charakteristischen Funktionen der Faltungsfaktoren ist, dann erhält man eine weitere äquivalente Definition für unendliche Teilbarkeit:

Eine charakteristische Funktion   ist genau dann unendlich teilbar, wenn für jedes   eine charakteristische Funktion   existiert, so dass  .

Insbesondere durch diese sehr einfache Definition lässt sich in einigen Fällen die Frage nach der unendlichen Teilbarkeit leicht beantworten. So hat z. B. die oben als Beispiel angeführte Chi-Quadrat-Verteilung mit Parameter   die charakteristische Funktion   und es ist   wieder eine charakteristische Funktion einer Chi-Quadrat-Verteilung mit Parameter  .

Aus der letzten Definition lassen sich kanonische Darstellungen für unendlich teilbare Verteilungsfunktionen ableiten: Eine Verteilungsfunktion   ist genau dann unendlich teilbar, wenn ihre charakteristische Funktion   eine der folgenden Darstellungen hat

 

(Lévy-Khinchin-Formel nach Paul Lévy und Alexandr Chintschin) bzw.

 

(kanonische Darstellung nach Lévy).

Dabei sind   und   reelle Zahlen,   ist eine monoton nicht fallende und beschränkte Funktion mit   und   und   sind in   bzw.   monoton nicht fallend mit   und die Integrale   und   existieren für jedes  .

Beide Darstellungen sind eindeutig.

Der Parameter   gibt dabei nur eine horizontale Verschiebung der Verteilungsfunktion   auf der reellen Achse an (Verschiebungsparameter, engl. „location Parameter“). Die Konstante   wird als Gaußsche Komponente bezeichnet. Die Funktion   heißt Lévy-Chintschinsche Spektralfunktion von   bzw.  , sie hat bis auf einen nichtnegativen Faktor die Eigenschaften einer Verteilungsfunktion, die Funktionen   und   heißen Lévysche Spektralfunktionen von   bzw.  .

Diese beiden kanonischen Darstellungen sind Verallgemeinerungen einer bereits früher von Andrei Kolmogorow gefundenen Darstellung, die jedoch nur für Verteilungsfunktionen mit existierender Varianz gilt.

Unendliche Teilbarkeit vs. Reproduktivität

Bearbeiten

Ein ähnliches Attribut für Zufallsvariablen ist die Reproduktivität: Eine Familie von Verteilungen heißt reproduktiv, wenn die Verteilung der Summe zweier unabhängiger Zufallsvariablen mit Verteilung aus der Familie wieder in derselben Familie liegt. Ein Unterschied zur unendlichen Teilbarkeit besteht beispielsweise darin, dass bei letzterer die Familie nicht spezifiziert werden muss:

So ist die Familie der Exponentialverteilungen unendlich teilbar, aber nicht reproduktiv (die Exponentialverteilungen bilden jedoch eine Unterfamilie der Familie der Gammaverteilungen, die wiederum reproduktiv ist).

Ein Beispiel für eine reproduktive, aber nicht unendlich teilbare Familie ist die Binomialverteilung mit variablem Parameter   und festem Parameter  : Ist beispielsweise   Binomial -verteilt und   davon unabhängig Binomial -verteilt, so besitzt   eine Binomial -Verteilung. Unendlich teilbar ist   aber nicht, da es zum Beispiel nicht in   identisch verteilte, unabhängige Summanden zerlegt werden kann.

  • B. W. Gnedenko: Lehrbuch der Wahrscheinlichkeitstheorie. Akademie Verlag, Berlin 1968, 1. dt. Ausgabe