Gegenbauer polynomials


Contributors to Wikimedia projects

Article Images

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)
n
(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

  • Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

  • Gegenbauer polynomials with α=1

  • Gegenbauer polynomials with α=2

  • Gegenbauer polynomials with α=3

  • An animation showing the polynomials on the -plane for the first 4 values of n.

A variety of characterizations of the Gegenbauer polynomials are available.

 
 
  • Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001):
 
When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
When α = 1, the equation reduces to the Chebyshev differential equation, and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.[1]
 
(Abramowitz & Stegun p. 561). Here (2α)n is the rising factorial. Explicitly,
 
From this it is also easy to obtain the value at unit argument:
 
 
in which   represents the rising factorial of  .
One therefore also has the Rodrigues formula
 

Orthogonality and normalization

edit

For a fixed α > -1/2, the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774)

 

To wit, for n ≠ m,

 

They are normalized by

 

The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, valid with α = (n − 2)/2,

 

When n = 3, this gives the Legendre polynomial expansion of the gravitational potential. Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein & Weiss 1971).

It follows that the quantities   are spherical harmonics, when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics, up to a normalizing constant.

Gegenbauer polynomials also appear in the theory of positive-definite functions.

The Askey–Gasper inequality reads

 

In spectral methods for solving differential equations, if a function is expanded in the basis of Chebyshev polynomials and its derivative is represented in a Gegenbauer/ultraspherical basis, then the derivative operator becomes a diagonal matrix, leading to fast banded matrix methods for large problems.[2]

Specific
  1. ^ Arfken, Weber, and Harris (2013) "Mathematical Methods for Physicists", 7th edition; ch. 18.4
  2. ^ Olver, Sheehan; Townsend, Alex (January 2013). "A Fast and Well-Conditioned Spectral Method". SIAM Review. 55 (3): 462–489. arXiv:1202.1347. doi:10.1137/120865458. eISSN 1095-7200. ISSN 0036-1445.