Tschebyscheffsche Ungleichung


Autoren der Wikimedia-Projekte

Article Images

Die Tschebyscheff-Ungleichung, auch Bienaymé-Tschebyscheff-Ungleichung genannt,[1] ist eine Ungleichung in der Stochastik, einem Teilgebiet der Mathematik. Sie ist nach Irénée-Jules Bienaymé und Pafnuti Lwowitsch Tschebyscheff benannt; dessen Namen findet sich in der Literatur in verschiedenen Schreibungen, unter anderem Tschebyschew, Chebyshev, Čebyšev oder Tschebyschow.[2] In der Tschebyscheff-Ungleichung wird die Wahrscheinlichkeit, dass eine Zufallsvariable mehr als einen vorgegebenen Schwellenwert vom Erwartungswert abweicht, durch die Varianz abgeschätzt.

Aussage

Sei   eine Zufallsvariable mit Erwartungswert

 

und endlicher Varianz

 .

Dann gilt für alle reellen Zahlen  :

 .

Durch Übergang zum komplementären Ereignis erhält man

 .

Güte der Abschätzung

Die von der Tschebyscheff-Ungleichung angegebenen Grenzen sind scharf in dem Sinne, dass Zufallsvariablen existieren, für die bei der Abschätzung Gleichheit gilt.

Dies ist beispielsweise der Fall für eine diskrete Zufallsvariable   mit

 

und

 ,

wobei   eine echt positive reelle Zahl ist und  . Dann ist   und  , damit folgt die Abschätzung

 ,

die für   mit Gleichheit erfüllt ist, da dann   gilt.

Im Allgemeinen sind die Abschätzungen aber eher schwach. Beispielsweise sind sie für   trivial. Dennoch ist der Satz oft nützlich, weil er ohne Verteilungsannahmen über die Zufallsvariablen auskommt und somit für alle Verteilungen mit endlicher Varianz (insbesondere auch solche, die sich stark von der Normalverteilung unterscheiden) anwendbar ist. Außerdem sind die Schranken einfach zu berechnen.

Varianten

Abweichungen ausgedrückt durch die Standardabweichung

Ist die Standardabweichung   von Null verschieden und   eine positive Zahl, so erhält man mit   eine oft zitierte Variante der Tschebyscheff-Ungleichung:

 .

Diese Ungleichung liefert nur für   eine sinnvolle Abschätzung, für   ist sie trivial, denn Wahrscheinlichkeiten sind stets durch 1 beschränkt.

Verallgemeinerung auf höhere Momente

Die Tschebyscheff-Ungleichung lässt sich auf höhere Momente verallgemeinern. Man bezeichnet diese verallgemeinerte Ungleichung nicht selten (vereinfachend) ebenfalls als Tschebyscheff-Ungleichung (englisch Chebyshev's inequality)[3], während sie im Rahmen der Wahrscheinlichkeitstheorie manchmal auch als markoffsche Ungleichung (bzw. als markovsche Ungleichung o. ä., englisch Markov's inequality) genannt wird[4][5]. Bei einigen Autoren findet man die verallgemeinerte Ungleichung auch unter der Bezeichnung tschebyscheff-markoffsche Ungleichung (bzw. chebyshev-markovsche Ungleichung o. ä.).[6]

Die verallgemeinerte Ungleichung besagt, dass für einen Maßraum   und eine messbare Funktion   und   stets die Ungleichung

 .

gilt.

Dies folgt aus

 

Die oben genannte Version der Ungleichung erhält man als Spezialfall, indem man  ,   und   setzt, denn dann ist

 .

Geschichte

In den meisten Lehrbüchern trägt die Ungleichung lediglich den Namen von Pafnuti Lwowitsch Tschebyschow. Er veröffentlichte seinen Beweis für diskrete Zufallsvariablen im Jahre 1867 simultan in St. Petersburg und in Paris, dort in Joseph Liouvilles Journal Journal de Mathématiques Pures et Appliquées. Ein allgemeinerer Beweis wurde jedoch schon 1853 von Irénée-Jules Bienaymé in dem Paper Considérations a l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. veröffentlicht. Dieses wurde sogar direkt vor Tschebyscheffs Veröffentlichung in Liouvilles Journal nochmals in ebendiesem abgedruckt. In einer späteren Veröffentlichung erkannte Tschebyscheff die Erstveröffentlichung von Bienaymé an. [7] [8]

Anwendungen

Beispiele

Beispiel 1

Nehmen wir zum Beispiel an, dass Wikipedia-Artikel einen Erwartungswert der Länge von 1000 Zeichen mit einer Standardabweichung von 200 Zeichen haben. Aus der Tschebyscheff-Ungleichung kann man dann ableiten, dass mit mindestens 75 % Wahrscheinlichkeit ein Wikipedia-Artikel eine Länge zwischen 600 und 1400 Zeichen hat ( ).

Der Wert für die Wahrscheinlichkeit wird auf folgende Weise berechnet:

 

Beispiel 2

Eine andere Folgerung aus dem Satz ist, dass für jede Wahrscheinlichkeitsverteilung mit Mittelwert   und endlicher Standardabweichung   mindestens die Hälfte der Werte im Intervall   liegen ( ).

Beispiel 3

Ein Zufallsereignis tritt bei einem Versuch mit Wahrscheinlichkeit   ein. Der Versuch wird  -mal wiederholt; das Ereignis trete dabei  -mal auf.   ist dann binomialverteilt und hat Erwartungswert   und Varianz  ; die relative Häufigkeit   des Eintretens hat somit Erwartungswert   und Varianz  . Für die Abweichung der relativen Häufigkeit vom Erwartungswert liefert die Tschebyscheff-Ungleichung

 ,

wobei für die zweite Abschätzung die unmittelbar aus der Ungleichung vom arithmetischen und geometrischen Mittel folgende Beziehung   verwendet wurde.

Bei dieser Formel handelt es sich um den Spezialfall eines schwachen Gesetzes der großen Zahlen, das die stochastische Konvergenz der relativen Häufigkeiten gegen den Erwartungswert zeigt.

Die Tschebyscheff-Ungleichung liefert für dieses Beispiel nur eine grobe Abschätzung, eine quantitative Verbesserung liefert die Chernoff-Ungleichung.

Beweisskizze

Die meisten Autoren führen die Tschebyscheff-Ungleichung als Spezialfall der Markow-Ungleichung

 

mit   und der Funktion   ein.[10] [11] [12]

Wie man die Markow-Ungleichung mit schulgemäßen Mitteln aus einem unmittelbar einsichtigen Flächenvergleich folgern und dann daraus diese Fassung der Ungleichung von Tschebyscheff herleiten kann, findet man zum Beispiel bei Wirths.[13] Für einen direkten Beweis definiert man

 .

Bezeichnet   die Indikatorfunktion auf der Menge  , so gilt für alle   die Ungleichung

 .

Denn ist  , so ist die rechte Seite null und die Ungleichung erfüllt. Ist  , so hat die linke Seite nach Definition der Mengen   mindestens den Wert  , und die Ungleichung ist wiederum erfüllt. Mit der Monotonie des Erwartungswertes und seinen elementaren Rechenregeln folgt über die Definition der Varianz

 .

Teilen durch   liefert die Ungleichung.[14]

Verwandte Resultate

Literatur

Einzelnachweise und Fußnoten

  1. Norbert Henze: Stochastik für Einsteiger. Eine Einführung in die faszinierende Welt des Zufalls. 10. Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-03076-6, S. 165, doi:10.1007/978-3-658-03077-3.
  2. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 112, doi:10.1515/9783110215274.
  3. Robert B. Ash: Real Analysis and Probability. 1972, S. 84–85 & S. 227
  4. A. N. Širjaev: Wahrscheinlichkeit. 1988, S. 572
  5. R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 33
  6. Heinz Bauer: Maß- und Integrationstheorie. 1992, S. 128
  7. Chebyshev, Pafnutii Lvovich. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
  8. V.V. Sazonov: Bienaymé, Irenée-Jules. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
  9. Heinz Bauer: Wahrscheinlichkeitstheorie. 2002, S. 69 ff
  10. Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, S. 110, doi:10.1007/978-3-642-36018-3.
  11. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 122, doi:10.1515/9783110215274.
  12. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 288, doi:10.1007/978-3-642-21026-6.
  13. H. Wirths: Der Erwartungswert – Skizzen zur Begriffsentwicklung von Klasse 8 bis 13. In: Mathematik in der Schule 1995/Heft 6, S. 330–343
  14. Ehrhard Behrends: Elementare Stochastik. Ein Lernbuch – von Studierenden mitentwickelt. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-8348-1939-0, S. 229–230, doi:10.1007/978-3-8348-2331-1.