Cord blood bank: Difference between revisions - Wikipedia


Article Images

Line 1:

A '''cord blood bank''' is a facility which stores [[Umbilical cord|umbilical]] [[cord blood]] for future use. Both private and public cord blood banks have developed in response to the potential for cord blood in treating diseases of the blood and immune systems. Public cord blood banks accept donations to be used for anyone in need, and as such function like public blood banks. Traditionally, public cord blood banking has been more widely accepted by the medical community.<ref name="ama-assn1">{{cite web|url=http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/opinion2165.page |title=Opinion 2.165 - Umbilical Cord Blood Banking |publisher=Ama-assn.org |date= |accessdate=2015-03-09}}</ref> Private cord blood banks store cord blood solely for potential use by the donor or donor's family. Private banks typically charge around $2,000 for the collection and around $200 a year for storage.<ref name="abcnews1">{{cite web|url=https://abcnews.go.com/WN/WorldNews/cord-blood-banking-marketing-medicine/story?id=10577020 |title=Cord Blood Banking: Marketing Before Medicine? - ABC News |publisher=Abcnews.go.com |date=2010-05-06 |accessdate=2015-03-09}}</ref> The leading cord blood banks in the U.S. include Americord, Cord Blood Registry, Viacord.

The policy of the [[American Academy of Pediatrics]] states that "private storage of cord blood as 'biological insurance' is unwise" unless there is a family member with a current or potential need to undergo a stem cell transplantation.<ref name="aappublications1" /><ref>{{cite web |url=http://www.nationalcordbloodprogram.org/AAP%20News%20Release%20-%20AAP%20CORD%20BLOOD%20BANKING%20FOR%20FUTURE%20TRANSPLANTATION%20NOT%20RECOMMENDED.htm |archive-url=https://web.archive.org/web/20060105213209/http://www.nationalcordbloodprogram.org/AAP%20News%20Release%20-%20AAP%20CORD%20BLOOD%20BANKING%20FOR%20FUTURE%20TRANSPLANTATION%20NOT%20RECOMMENDED.htm |url-status=dead |archive-date=2006-01-05 |title=Aap News Release — Aap: Cord Blood Banking For Future Transplantation Not Recommended |publisher=Nationalcordbloodprogram.org |date=1999-07-06 |accessdate=2015-03-09 }}</ref><ref name="Pediatrics.aappublications.org">{{cite journal|url=http://pediatrics.aappublications.org/content/123/3/1011.abstract |title=Private Cord Blood Banking: Experiences and Views of Pediatric Hematopoietic Cell Transplantation Physicians |year=2009 |publisher=Pediatrics.aappublications.org |doi=10.1542/peds.2008-0436 |accessdate=2015-03-09|last1=Thornley |first1=I. |last2=Eapen |first2=M. |last3=Sung |first3=L. |last4=Lee |first4=S. J. |last5=Davies |first5=S. M. |last6=Joffe |first6=S. |journal=Pediatrics |volume=123 |issue=3 |pages=1011–7 |pmid=19255033 |pmc=3120215 }}</ref> The American Academy of Pediatrics also notes that the odds of using one's own cord blood is 1 in 200,000<ref name="webmd2">{{cite web|url=http://www.webmd.com/parenting/baby/features/banking-your-babys-cord-blood?page=2 |title=Umbilical cord blood banking: Pros & cons, costs, banking basics |publisher=Webmd.com |date= |accessdate=2015-03-09}}</ref> while the [[National Academy of Medicine]] says that only 14 such procedures have ever been performed.<ref name="webmd2" /> Private storage of one's own cord blood is unlawful in Italy and France, and it is also discouraged in some other European countries. The [[American Medical Association]] states "Private banking should be considered in the unusual circumstance when there exists a family predisposition to a condition in which umbilical cord stem cells are therapeutically indicated. However, because of its cost, limited likelihood of use, and inaccessibility to others, private banking should not be recommended to low-risk families."<ref name="ama-assn1" /> The American Society for Blood and Marrow Transplantation and the [[American Congress of Obstetricians and Gynecologists]] also encourage public cord banking and discourage private cord blood banking. Nearly all cord blood transfusions come from public banks, rather than private banks,<ref name="abcnews1" /><ref name="Pediatrics.aappublications.org" /> partly because most treatable conditions can't use one's own cord blood.<ref name="aappublications1">{{cite journal|url=http://pediatrics.aappublications.org/content/119/1/165.full |title=Cord Blood Banking for Potential Future Transplantation |journal=Pediatrics |year=2007 |volume=119 |pages=165–170 |publisher=Pediatrics.aappublications.org |doi=10.1542/peds.2006-2901 |pmid=17200285 |accessdate=2015-03-09|author1=American Academy of Pediatrics Section on Hematology/Oncology |author2=American Academy of Pediatrics Section on Allergy/Immunology |last3=Lubin |first3=B. H. |last4=Shearer |first4=W. T. |issue=1 |pmc=6091883 |s2cid=73370999 }}</ref><ref name="autogenerated1">{{cite web|last=Searcey |first=Dionne |url=https://www.wsj.com/articles/SB10001424052702303887804579501500366071342 |title=Inside the Private Umbilical Cord Blood Banking Business |publisher=WSJ |date=2014-04-25 |accessdate=2015-03-09}}</ref>

The American College of Obstetricians and Gynecologists recommends that Private umbilical cord blood banking may be considered when there is knowledge of a family member with a medical condition (malignant or genetic) who could potentially benefit from cord blood transplantation.<ref>{{cite web|title=ACOG Committee Opinion Umbilical Cord Blood Banking|url=https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2019/03/umbilical-cord-blood-banking|publisher=The American College of Obstetricians and Gynecologists|date=March 12, 2023}}</ref>

Cord blood contains [[hematopoietic]] stem cells (which can differentiate only into blood cells), and should not be confused with [[embryonic stem cell]]s or [[pluripotent stem cell]]s, which can differentiate into any cell in the body.<ref name="abcnews1" /><ref name="aappublications1" /> Cord blood stem cells are blood cell progenitors which can form red blood cells, white blood cells, and platelets. This is why cord blood cells are currently used to treat blood and immune system related genetic diseases, cancers, and blood disorders. Cord blood is also a source of mesenchymal stem cells, which can further be differentiated to form connective tissues, bones and cartilage.<ref>{{Cite web|url=http://www.stemcellsaustralia.edu.au/About-Stem-Cells/FAQ/What-are-umbilical-cord-stem-cells-.aspx|title=What are umbilical cord stem cells? — Stem Cells Australia|last=zainab|first=khursheed|date=|website=www.stemcellsaustralia.edu.au|access-date=2019-11-10|archive-date=2019-10-21|archive-url=https://web.archive.org/web/20191021194314/http://www.stemcellsaustralia.edu.au/About-Stem-Cells/FAQ/What-are-umbilical-cord-stem-cells-.aspx|url-status=dead}}</ref> On the possibility that cord blood stem cells could be used for other purposes, the World Marrow Donor Association and European Group on Ethics in Science and New Technologies states "The possibility of using one’s own cord blood stem cells for regenerative medicine is currently purely hypothetical....It is therefore highly hypothetical that cord blood cells kept for autologous use will be of any value in the future” and “the legitimacy of commercial cord blood banks for autologous use should be questioned as they sell a service which has presently no real use regarding therapeutic options.”<ref name="autogenerated2">{{cite web|url=http://bloodcell.transplant.hrsa.gov/cord/files/wmdapolicystatement.pdf|title=WMDA Policy Statement on the Utility of Autologous or Family Cord Blood Unit Storage|publisher=Bloodcell.transplant.hrsa.gov|accessdate=2015-03-09|archive-url=https://web.archive.org/web/20171010155416/https://bloodcell.transplant.hrsa.gov/cord/files/wmdapolicystatement.pdf|archive-date=2017-10-10|url-status=dead}}</ref><ref>{{cite web|url=http://www.nationalcordbloodprogram.org/donation/public_vs_private_donation.html |title=Public Cord Blood Donation |publisher=National Cord Blood Program |date= |accessdate=2015-03-09}}</ref>

The 2017 policy of the [[American Academy of Pediatrics]], or AAP, states that "Cord blood is an excellent source of stem cells for hematopoietic stem cell transplantation in children with some fatal diseases. Cord blood transplantation offers another method of definitive therapy for infants, children, and adults with certain hematologic malignancies, hemoglobinopathies, severe forms of T-lymphocyte and other immunodeficiencies, and metabolic diseases." While private banking applications in the fields of Hematology/Oncology are more limited than those available for public cord blood banking, "new developments in early clinical trial research for regenerative purposes may affect cord blood banking in the future. Some examples of these trials of cord blood transplants are those for Alzheimer disease, autism spectrum disorder, diabetes, cerebral palsy, hypoxic ischemic encephalopathy, systemic lupus erythematosus, and systemic sclerosis. Perhaps the most immediate challenge is that of educating medical personnel, parents, and the public about the increasing need and uses of cord blood banking."<ref>{{cite web|title=American Academy of Pediatrics Policy Statement, Cord Blood Banking for Potential Future Transplantation|url=https://publications.aap.org/pediatrics/article/140/5/e20172695/37866/Cord-Blood-Banking-for-Potential-Future?autologincheck=redirected|publisher=American Academy of Pediatrics|date=March 12, 2023}}</ref>

The [[American Medical Association]] states "Transplants of umbilical cord blood have been recommended or performed to treat a variety of conditions. Cord blood is also a potential source of stem and progenitor cells with possible therapeutic applications. Physicians who provide obstetrical care should be prepared to inform pregnant women of the various options regarding cord blood donation or storage and the potential uses of donated samples. Physicians who participate in collecting umbilical cord blood for storage should Discuss the option of private banking of umbilical cord blood when there is a family predisposition to a condition for which umbilical cord stem cells are therapeutically indicated and encourage women who wish to donate umbilical cord blood to donate to a public bank if one is available when there is low risk of predisposition to a condition for which umbilical cord blood cells are therapeutically indicated."<ref>{{cite web|title=AMA Code of Medical Ethics, Umbilical Cord Blood Banking|url=https://code-medical-ethics.ama-assn.org/ethics-opinions/umbilical-cord-blood-banking#:~:text=Obtain%20informed%20consent%20for%20the,of%20the%20informed%20consent%20process|publisher=The American Medical Association|date=March 12, 2023}}</ref>.

According to the Clinical Practice Guidelines of the [[Society of Obstetricians and Gynaecologists of Canada]] (SOGC)

"patients with leukemia suggest that rates of GVHD following related cord blood transplants may be less than rates following unrelated cord blood transplantation. Similarly, in non-malignant diseases treated by related or unrelated cord blood transplants, Bizzetto found that the risk of acute GVHD was lower with related cord blood transplants compared to unrelated cord blood and the 3-year survival rate was better."<ref>{{cite web|title=SOGC Clinical Practice Guideline|url=https://www.jogc.com/article/S1701-2163(15)30157-2/pdf|publisher=Society of Obstetricians and Gynaecologists of Canada|date=March 12, 2023}}</ref>

Cord blood contains [[hematopoietic]] stem cells (which can differentiate only into blood cells), and should not be confused with [[embryonic stem cell]]s or [[pluripotent stem cell]]s, which can differentiate into any cell in the body.<ref name="abcnews1" /> Cord blood stem cells are blood cell progenitors which can form red blood cells, white blood cells, and platelets. This is why cord blood cells are currently used to treat blood and immune system related genetic diseases, cancers, and blood disorders. Cord blood is also a source of mesenchymal stem cells, which can further be differentiated to form connective tissues, bones and cartilage.<ref>{{Cite web|url=http://www.stemcellsaustralia.edu.au/About-Stem-Cells/FAQ/What-are-umbilical-cord-stem-cells-.aspx|title=What are umbilical cord stem cells? - Stem Cells Australia|last=zainab|first=khursheed|date=|website=www.stemcellsaustralia.edu.au|access-date=2019-11-10|archive-date=2019-10-21|archive-url=https://web.archive.org/web/20191021194314/http://www.stemcellsaustralia.edu.au/About-Stem-Cells/FAQ/What-are-umbilical-cord-stem-cells-.aspx|url-status=dead}}</ref>

==Regulation==

In the United States, the [[Food and Drug Administration]] regulates cord blood under the category of “Human Cells, Tissues, and Cellular and Tissue Based-Products.” The Code of Federal Regulations under which the FDA regulates public and private cord blood banks is Title 21 Section 1271.<ref>{{cite web|url=http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=1271|title=CFR - Code of Federal Regulations Title 21|publisher=[[Food and Drug Administration]]|accessdate=2014-03-18}}</ref> Several states also require accreditation, including New York, New Jersey, and California. Any company not accredited within those states are not legally permitted to collect cord blood from those states, even if the company is based out of state. Potential clients can check the New York accreditation status from the New York Umbilical Cord Blood Banks Licensed to Collect in New York.<ref>{{cite web|url=http://www.health.ny.gov/professionals/patients/donation/umbilical_cord_blood/licensed_banks.htm |title=Umbilical Cord Blood Banks Licensed to Collect in New York |publisher=Health.ny.gov |date= |accessdate=2015-03-09}}</ref> Both public and private cord blood banks are also eligible for voluntary accreditation with either the Association for the Advancement of Blood & Biotherapies (AABB) or the Foundation for the Accreditation of Cellular Therapy (FACT). Potential clients can check the current accreditation status of laboratories from the AABB list of accredited cord blood laboratories or the FACT search engine of accredited cord blood banks (on their home page).<ref>{{cite web|url=http://www.aabb.org/sa/facilities/celltherapy/Pages/CordBloodAccrFac.aspx |title=AABB Accredited Cord Blood (CB) Facilities |publisher=Aabb.org |date= |accessdate=2015-03-09}}</ref> Other countries also have regulations pertaining to cord blood.<ref name="parents1">{{cite web|last=Moninger |first=Jeannette |url=http://www.parents.com/pregnancy/my-baby/cord-blood-banking/the-cord-blood-controversy/ |title=The Cord Blood Banking Controversy |publisher=Parents.com |date= |accessdate=2015-03-09}}</ref>

==Collection and cryopreservation==

Cord blood collection happens after the umbilical cord has been cut and is extracted from the fetal end of the cord, diverting up to 75 +/- 23&nbsp;mL from the neonate. It is usually done within ten minutes of giving birth. Additional stem cells may be collected from the placenta. After the health care provider draws the cord blood from the placental end of the umbilical cord, the placenta is couriered to the stem cell laboratory, where it is processed for additional stem cells. An adequate cord blood collection requires at least 75mL in order to ensure that there will be enough cells to be used for a transplantation. Before the cord blood is stored for later use, it undergoes viral testing, including tests for HIV and Hepatitis B and C, and tissue typing to determine Human Leukocyte Antigen type. It will also be examined for nucleated cell count, cell viability, blood group antigen ABO & Rh blood group system, molecule cluster ([[CD34]]), and bacterial and fungal growth.{{cn|date=December 2021}}

After the collection, the cord blood unit is shipped to the lab and processed, and then cryopreserved. There are many ways to process a cord blood unit, and there are differing opinions on what the best way is. Importantly Some processing methods separate out the red blood cells areand largelyremove removedthem, duringwhile others keep the processred blood cells. A However the unit is processed, a cryopreservant is added to the cord blood to allow the cells to survive the cryogenic process. After the unit is slowly cooled to −90&nbsp;°C, it can then be added to a liquid nitrogen tank which will keep the cord blood unit frozen at −196&nbsp;°C. The slow freezing process is important to keep the cells alive during the freezing process. ManyThere is no consensus yet on optimal procedures for these cord blood cells, although many cryopreservation strategies suggest using [[dimethyl sulfoxide]] (DMSO), slow or controlled rate cooling, and rapid thawing.<ref>{{cncite journal |vauthors=Jahan S, Kaushal R, Pasha R, Pineault N |title=Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells |journal=Transfus Med Rev |volume=35 |issue=2 |pages=95–102 |date=DecemberApril 2021 |pmid=33640254 |doi=10.1016/j.tmrv.2021.01.003 }}</ref>

Cord blood stem cells (though usually from donors) are currently used in the treatment of several life-threatening conditions, mainly blood and immune system related genetic diseases, cancers, and blood disorders. The first clinically documented use of cord blood stem cells was in the successful treatment of a six-year-old boy afflicted by Fanconi anemia in 1988. Since then, cord blood has become increasingly recognized as a source of stem cells that can be used in stem cell therapy. Recent studies have shown that cord blood has unique advantages over traditional bone marrow transplantation, particularly in children, and can be life-saving in rare cases where a suitable bone-marrow donor cannot be found. Cord blood stem cells can also be used for siblings and other members of your family who have a matching tissue type. Siblings have a 25% chance of compatibility, and the cord blood may even be a match for parents (50%) and grandparents.

Cord blood stem cells (though usually from donors) are currently used in the treatment of several life-threatening conditions, mainly blood and immune system related genetic diseases, cancers, and blood disorders. The first clinically documented use of cord blood stem cells was in the successful treatment of a six-year-old boy afflicted by Fanconi anemia in 1988. For two decades after that, cord blood became increasingly recognized as a source of stem cells that can be used in stem cell therapy.<ref name="aappublications1" /> Subsequently, with the arrival of newer techniques such as haploidentical transplantation, there has been a trend away from cord blood as the stem cell source.<ref name="NYT 2024">{{cite news |last1=Kliff |first1=Sarah |title=What Parents Should Know About Cord Blood Banking |url=https://www.nytimes.com/2024/07/15/health/cord-blood-banking.html |access-date=23 August 2024 |publisher=The New York Times |date=July 15, 2024}}</ref>

==Public banks==

Public cord blood banks function like public blood banks, in that they accept donations from anyone, discard donations that fail to meet various quality control standards, and use national registries to find recipients for their samples. Since patients who need cord blood frequently need more cells than a single collection would have provided, public banks frequently combined multiple samples together when preparing the treatment for a single patient. UnlikeBefore the advent of haploidentical bone marrow transplantation, cord blood's transplantationlack doesn'tof requirement requirefor an exact genetic match, which makesmade it easier to provide patients samples from unrelated donors.<ref name="aappublications1" /> The percentage of public bank donations discarded as medical waste is often cited to be between 60 and 80%. Some of this is due to contamination that occasionally occurs during collection or complications arising from shipping, though this is mostly due to the fact that most cord blood collections fail to collect enough usable cells.<ref name="parents1" /> Because matches are almost always likely to be better in a public than a private bank, and cord blood from public banks doesn't suffer from the problems it commonly suffers from at private banks (such as potential lower quality control and lower medical usefulness of using a patient's own potentially diseased cord blood), public cord blood banking has been more widely accepted by the medical community.<ref name="ama-assn1" /> One important obstacle facing public banks is the high cost required to maintain them, which has prevented more than a handful from opening. Because public banks do not charge storage fees, medical centers do not always have the funds required to establish and maintain them.<ref>"[https://www.babiesonline.com/articles/pregnancy/cord-blood/public-vs-private-cord-blood-banks.asp Public vs Private Cord Blood Banks]", Babies Online, Retrieved September 6, 2016</ref>

A recent large study by the journal Pediatrics concluded that almost all cord blood transplants come from public banks:<ref>{{cite web|url=https://www.washingtonpost.com/wp-dyn/content/article/2009/04/13/AR2009041301860.html |title=Study Questions Value of Private Cord-Blood Banks |work=Washingtonpost.com |date= |accessdate=2015-03-09}}</ref>

<blockquote>In the Pediatrics study, transplant specialists who collectively have performed thousands of stem cell transplants for childhood leukemia and other illnesses report that only 50 involved privately banked blood. (Support for public cord-blood banking is widespread in the medical community.) Forty-one cases involved blood used to treat a family member, often a sibling; in 36 of those cases the need for a transplant was known before the cord blood was collected. Only nine cases involved giving cord blood back to the donor, a practice known as autologous transplantation and the chief selling point for private cord-blood banking.</blockquote>

==Private banks==

{| class="wikitable sortable"

Private banking is typically costly to parents and not covered by insurance. The ability to use the cord blood may also depend on the long-term commercial viability of the enterprise.<ref name="autogenerated1" /> Accordingly, whether cord blood banking is a worthwhile expenditure for the expectant parent depends in part upon whether the expenditure is offset by the likelihood of ultimately using the cord blood and by the benefits of such use.<ref name="autogenerated1" /> It is important to ensure the credentials of any potential private bank. In the United States, the Food and Drug Administration regulates cord blood under the category of “Human Cells, Tissues, and Cellular and Tissue Based-Products”. Since the FDA considers cord blood stored at public banks to be "drugs", but doesn't consider cord blood stored at private banks for use by the donor to be drugs, private banks are held to a less stringent regulatory standard.<ref name="parents1" />

|+Public Cord Blood Bank around the world

!USA

!UK

!Germany

!Canada

!Australia

!China

!Japan

|-

|

* Carolinas Cord Blood Bank <ref>{{Cite web|url=https://sites.duke.edu/ccbb/|title=Carolinas Cord Blood Bank – A Not-for-Profit Public Cord Blood Bank|last=khursheed|first=zainab|date=|website=Carolinas Cord BBlood Bank|language=en-US|access-date=2019-11-10}}</ref>

* BloodworksNW <ref>{{Cite web|url=https://parentsguidecordblood.org/en/banks/bloodworksnw|title=BloodworksNW|last=khursheed|first=Zainab|website=parentsguidecordblood.org}}</ref>

* [https://parentsguidecordblood.org/en/banks/lifebankusa LifebankUSA]

* [https://parentsguidecordblood.org/en/bank/americord-registry Americord]

* [https://parentsguidecordblood.org/en/banks/stemcyte StemCyte]

* [https://parentsguidecordblood.org/en/banks/cellsure CellSure]

|

* the Anthony Nolan Cord Blood Bank<ref name=":0">{{Cite web|url=https://www.hta.gov.uk/guidance-public/cord-blood-banking-guide-parents/cord-blood-banking-options/public-cord-blood|title=Public cord blood banking {{!}} Human Tissue Authority|last=khursheed|first=zainab|date=|publisher=Human Tissue Authority|website=www.hta.gov.uk|access-date=2019-11-10}}</ref>

* NHS Cord Blood [https://www.hta.gov.uk/guidance-public/cord-blood-banking-guide-parents/cord-blood-banking-options/public-cord-blood Bank]<ref name=":0" />

|

* DKMS Cord Blood [https://parentsguidecordblood.org/en/banks/dkms-cord-blood-bank Bank]

* German Cord Blood [https://parentsguidecordblood.org/en/banks/deutsche-stammzellspenderdatei-nabelschnurblut Bank]

* Bavarian Stem Cell [https://parentsguidecordblood.org/en/banks/bayerische-stammzellbank Bank]

|

* Canadian Blood [https://parentsguidecordblood.org/en/banks/canadian-blood-services-cord-blood-bank Services]

* Héma-Québec [https://parentsguidecordblood.org/en/banks/hema-quebec]

* Victoria [https://parentsguidecordblood.org/en/banks/victoria-angel-registry-of-hope Angel]

Historically, cord blood transplants required less stringent matching between the tissue types of the donor and patient, known as their [[human leukocyte antigen]] (HLA) types. Bone marrow transplants required a complete match on six key antigens, to decrease the chance of graft-versus-host disease, known as a 6/6 match. Cord blood transplants achieved the same medical success with only a 4/6 match.<ref name="parents1" /> HLA type is inherited from both parents, so siblings are particularly likely to be a match, and people from the same ethnic heritage are more likely to match. Minority ethnic groups have difficulty finding a perfectly matched transplant donor. Allogeneic transplants have traditionally had a better outcome when the donor and patient are related, because then the minor antigens also match.<ref>{{cite journal |vauthors=Vittayawacharin P, Kongtim P, Ciurea SO |title=Future directions in haploidentical hematopoietic stem cell transplantation |journal=Hematology |volume=29 |issue=1 |pages=2366718 |date=December 2024 |pmid=38889342 |doi=10.1080/16078454.2024.2366718 |doi-access=free }}</ref> The odds that two siblings will have a 6/6 match, for a matched related bone marrow transplant, are 25%.<ref name="autogenerated1" /> Now that new techniques for haploidentical [[stem cell transplantation]] have greatly improved success rates, the requirement for a matched donor is much less of a barrier to transplant. Most families can provide a haploidentical donor.<ref>{{cite journal |vauthors=Graham C, Litzow M |title=The use of haploidentical stem cell transplant as an alternative donor source in patients with decreased access to matched unrelated donors |journal=Hematology |volume=29 |issue=1 |pages=2338300 |date=December 2024 |pmid=38753458 |doi=10.1080/16078454.2024.2338300 |doi-access=free }}</ref>

|

* Queensland Cord Blood [https://parentsguidecordblood.org/en/banks/queensland-cord-blood-bank Bank]

* BMDI Cord Blood [https://parentsguidecordblood.org/en/banks/bmdi-cord-blood-bank Bank]

* Sydney Cord Blood [https://parentsguidecordblood.org/en/banks/sydney-cord-blood-bank Bank]

|

* Global Cord [https://parentsguidecordblood.org/en/banks/china-cord-blood-corp-beijing Blood]

* Shanghai Cord Blood [https://parentsguidecordblood.org/en/banks/shanghai-cord-blood-bank Bank]

|

* StemCell [https://parentsguidecordblood.org/en/bank/stemcell-institute Institute]

* [https://parentsguidecordblood.org/en/bank/eil Eil]

|-

|

|

|

|

|

|

|

|-

|

|

|

|

|

|

|

|}

The policy of the [[Society of Obstetricians and Gynaecologists of Canada]] (SOGC) supports public cord blood banking (similar to the collection and banking of other blood products, i.e. altruistic, anyone can use it), as well as stating that it should only be considered under certain circumstances. The policy of the [[American Academy of Pediatrics]] states that "private storage of cord blood as 'biological insurance' is unwise" unless there is a family member with a current or potential need to undergo a stem cell transplantation. Private storage of one's own cord blood is unlawful in Italy and France, and it is also discouraged in some other European countries.<ref name="ama-assn1" />

==Private banks==

Private banking is paid for by expecting parents and typically not covered by insurance, except for a few premium plans. The ability to use the cord blood may depend on the long-term commercial viability of the enterprise. Accordingly, whether cord blood banking is a worthwhile expenditure for the expectant parent depends in part upon whether the expenditure is offset by the likelihood of using the cord blood with current and potential future uses that may be developed over the lifetime of the child or storage period. In this way, cord blood banking is often referred to as a form a biological insurance. It is important to ensure the credentials of any potential private bank. In the United States, the Food and Drug Administration regulates cord blood under the category of “Human Cells, Tissues, and Cellular and Tissue Based-Products”. The [[AABB]] lists the private cord blood banks that adhere to the highest standards. The leading cord blood banks in the U.S. include Americord, Cord Blood Registry, Viacord.

Cord blood transplants require less stringent matching between the tissue types of the donor and patient, known as their [[human leukocyte antigen]] (HLA) types. Bone marrow transplants require a complete match on six key antigens, which are measures of graft-versus-host reaction, known as a 6/6 match. Cord blood transplants achieve the same medical success with only a 4/6 match.<ref name="parents1" /> HLA type is inherited from both parents, so siblings are particularly likely to be a match, and people from the same ethnic heritage are more likely to match. Minority ethnic groups have difficulty finding a perfectly matched transplant donor. Studies have found that allogeneic transplants have a better outcome when the donor and patient are related. The odds that two siblings will have the 6/6 match required for a bone marrow transplant are 25%. The odds that two siblings will have the 4/6 match required for a cord blood transplant are 39%.{{cn|date=December 2021}}

The American Society for Blood and Marrow Transplantation states that public donation of cord blood is encouraged where possible, the probability of using one's own cord blood is very small, and therefore storage of cord blood for personal use is not recommended, and family member banking (collecting and storing cord blood for a family member) is recommended when there is a sibling with a disease that may be treated successfully with an allogeneic transplant.{{cn|date=December 2021}}

The policy of the [[Society of Obstetricians and Gynaecologists of Canada]] (SOGC) patients with leukemia

suggest that rates of GVHD following related cord blood transplants may be less than rates following unrelated cord

blood transplantation.27 Similarly, in non-malignant diseases treated by related or unrelated cord blood transplants,

Bizzetto found that the risk of acute GVHD was lower with related cord blood transplants compared to unrelated cord

blood and the 3-year survival rate was better.

==Ownership of cord blood==

Line 99 ⟶ 34:

As of 2007, contracts of the largest cord blood banks do not explicitly state that the cord blood belongs to the donors and child with all the rights and privileges one would reasonably expect from ownership. The ambiguity leaves open future uses not approved by the donors and child. At the majority of private cord blood banking facilities, the mother owns all rights to the cord blood that was banked, until the minor in which the cord blood was taken turns eighteen. At that time the minor has all rights to his or her own banked cord blood.{{citation needed|date=January 2019}}

Concerns have been raised that the current interest in cord blood could cause a perception that cord blood is "unused" by the birth process, thus decreasing the amount of blood which is infused into the child as part of the birth process.<ref name="aappublications1" /> The pulsation of the cord pushes blood into the child, and it has been recommended that the cord cease pulsation prior to clamping. With the demand for cord blood increasing, there is a possibility that the cord could be clamped prematurely to preserve even more "extra" cord blood. The American Academy of Pediatricians notes: "if cord clamping is done too soon after birth, the infant may be deprived of a placental blood transfusion, resulting in lower blood volume and increased risk for anemia."<ref name="aappublications1" />

==Safety and effectiveness==

Using one's own cord blood cells might not be wise or effective, especially in cases of childhood cancers and leukemia. Children who develop an immunological disorder often are unable to use their own cord blood for transplant because the blood also contains the same genetic defect.<ref name="autogenerated2"/>

According to the Clinical Practice Guidelines of the [[Society of Obstetricians and Gynaecologists of Canada]] (SOGC)

"patients with leukemia suggest that rates of GVHD following related cord blood transplants may be less than rates following unrelated cord blood transplantation. Similarly, in non-malignant diseases treated by related or unrelated cord blood transplants, Bizzetto found that the risk of acute GVHD was lower with related cord blood transplants compared to unrelated cord blood and the 3-year survival rate was better."<ref>{{cite web|title=SOGC Clinical Practice Guideline|url=https://www.jogc.com/article/S1701-2163(15)30157-2/pdf|publisher=Society of Obstetricians and Gynaecologists of Canada|date=March 12, 2023}}</ref>

Additional issues include the possible contamination of the cord blood unit with the same cancer diagnosed later in life; for example, abnormal cells have been detected in filters containing newborn blood of children who were not diagnosed with acute leukemia until the age of 2 to 6 years. The high relapse rates after autologous or syngeneic transplant and the benefit of a graft-vs.-leukemia effect of an allogeneic transplant suggest that autologous cord blood would not be the ideal source of stem cells for patients with leukemia needing a transplant.<ref>{{cite journal |vauthors=Mosna F |title=The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View |journal=Cancers (Basel) |volume=16 |issue=13 |pages= |date=June 2024 |pmid=39001421 |pmc=11240611 |doi=10.3390/cancers16132359 |doi-access=free}}</ref>

==Confusion with embryonic stem cells==

The public in the United States has a general awareness of embryonic stem cells because of the [[stem cell controversy]]. However, cord blood stem cells ([[hematopoietic stem cells]]) are not embryonic stem cells (pluripotent stem cells).<ref name="abcnews1" />

In 2024, the ''New York Times'' described problems with microbial contamination as well as low-volume samples that did not have adequate stem cell counts.<ref name="NYT 2024" />

The stem cells in umbilical cord blood are called hematopoietic stem cells and cannot without genetic editing or engineering grow or differentiate into an embryo.

==Confusion with embryonic stem cells==

The public in the United States has a general awareness of embryonic stem cells because of the [[stem cell controversy]]. However, cord blood stem cells ([[hematopoietic stem cells]]) are not embryonic stem cells (pluripotent stem cells).<ref name="abcnews1" /><ref name="aappublications1" />

==See also==

* [[Americord Registry]]

* [[Cord Blood Registry]]

* [[Viacord]]

* [[Cryo-Cell International]]

* [[Stem cell]]

* [https://www.americordblood.com/compare-cord-blood-banks Public Vs Private Blood Bank Costs Compared]

==References==

Line 123 ⟶ 55:

==External links==

* [https://web.archive.org/web/20081122002720/http://www.marrow.org/cord/ National Marrow Donor Program]

* [https://cordbloodbankingcost.org/budget-friendly-options-for-storing-newborn-stem-cells/ Budget-Friendly Options for Storing Newborn Stem Cells]

{{Authority control}}