Théorème de Schwarz


Contributeurs aux projets Wikimedia

Article Images

Le théorème de Schwarz ou de Clairaut[1] est un théorème d'analyse portant sur les dérivées partielles secondes d'une fonction de plusieurs variables. Sous certaines hypothèses, il dit que l'ordre des deux dérivations : dériver par rapport à la variable y d'abord, puis par rapport à une variable x revient au même que dériver par rapport à la variable x d'abord puis par rapport à la variable y. Autrement dit :

Il apparaît pour la première fois dans un cours de calcul différentiel donné par Weierstrass en 1861[réf. nécessaire] auquel assistait alors Hermann Schwarz à Berlin.

La symétrie de la hessienne signifie que le résultat d'une dérivation partielle à l'ordre 2 par rapport à deux variables ne dépend pas de l'ordre dans lequel se fait la dérivation par rapport à ces deux variables :

 .

Ce théorème est parfois appelé par les anglophones « Young's theorem[6] » (théorème de Young), nom qui désigne également une extension aux dérivées d'ordre supérieur[7].

 
La fonction f ne possède pas de dérivée seconde en (0, 0).

Le résultat ci-dessus peut tomber en défaut lorsque les hypothèses ne sont pas vérifiées. Un premier contre-exemple, assez compliqué, a été donné par Schwarz lui-même en 1873[réf. nécessaire]. Un deuxième contre-exemple, plus simple, est proposé par Peano en 1884[8]. Il s'agit de la fonction définie par :

 

qui vérifie

 [9].

Application aux formes différentielles

modifier

Considérons, en dimension 2, la 1-forme différentielle exacte suivante, où f est de classe C2 :

 

Alors,

 

En appliquant le théorème de Schwarz, on en déduit :

 

Ceci est donc une condition nécessaire d'exactitude de la forme différentielle. Une forme différentielle vérifiant cette condition nécessaire est dite fermée.

Plus généralement, en dimension n :

toute forme exacte de classe C1 est fermée,

ce qui, dans le cas particulier d'une 1-forme ω, s'écrit :

 

Démonstration pour une 1-forme

Considérons une 1-forme exacte

 

où la fonction f est de classe C2. Nous savons par ailleurs que

 

Ainsi pour tout  

  et  

En dérivant   et   respectivement selon   et  ,

  et  

En vertu du théorème de Schwarz — qui s'applique ici car les   sont supposés de classe C1 — ces deux dérivées partielles sont égales, d'où

 

ce qui achève la démonstration.

  1. En France et en Belgique, il est parfois appelé théorème de Clairaut. Cf. James Stewart (trad. Micheline Citta-Vanthemsche), Analyse. Concepts et contextes, vol. 2 : Fonctions de plusieurs variables, De Boeck, , 1064 p. (ISBN 978-2-8041-5031-0, lire en ligne), p. 764.
  2. Sylvie Benzoni-Gavage, Calcul différentiel et équations différentielles : cours et exercices corrigés, Dunod, , 2e éd. (lire en ligne), p. 72.
  3. Une démonstration est disponible sur Wikiversité (voir infra).
  4. Le théorème est souvent énoncé et démontré sous l'hypothèse plus restrictive que f est de classe C2 sur U.
  5. Henri Cartan, Cours de calcul différentiel, Hermann, 1967, rééd. 1977, p. 65-69.
  6. (en) « Young’s theorem », sur UC Berkeley, Department of Agricultural & Resource Economics (version du sur Internet Archive).
  7. (en) R. G. D. Allen, Mathematical Analysis for Economists, New York, St. Martin's Press, (lire en ligne), p. 300-305.
  8. Ernst Hairer et Gerhard Wanner (trad. de l'anglais), L'Analyse au fil de l'histoire [« Analysis by Its History »], Springer, (1re éd. 1996) (lire en ligne), p. 316-317.
  9. Ce contre-exemple est détaillé sur Wikiversité (voir infra).

Lemme de Poincaré