A079586 - OEIS


Article Images

A079586

Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

41

3, 3, 5, 9, 8, 8, 5, 6, 6, 6, 2, 4, 3, 1, 7, 7, 5, 5, 3, 1, 7, 2, 0, 1, 1, 3, 0, 2, 9, 1, 8, 9, 2, 7, 1, 7, 9, 6, 8, 8, 9, 0, 5, 1, 3, 3, 7, 3, 1, 9, 6, 8, 4, 8, 6, 4, 9, 5, 5, 5, 3, 8, 1, 5, 3, 2, 5, 1, 3, 0, 3, 1, 8, 9, 9, 6, 6, 8, 3, 3, 8, 3, 6, 1, 5, 4, 1, 6, 2, 1, 6, 4, 5, 6, 7, 9, 0, 0, 8, 7, 2, 9, 7, 0, 4

COMMENTS

André-Jeannin proved that this constant is irrational.

This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - Amiram Eldar, Oct 30 2020

REFERENCES

Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

LINKS

Richard André-Jeannin, Problem H-450, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 29, No. 1 (1991), p. 89; Comparable, Solution to Problem H-450 by Paul S. Bruckman, ibid., Vol. 30, No. 2 (1992), p. 191-192.

Paul S. Bruckman, Problem B-602, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 25, No. 3 (1987), p. 279; Fibonacci Infinite Series, Solution to Problem B-602 by C. Georghiou, ibid., Vol. 26, No. 3 (1988), pp. 281-282.

FORMULA

Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - Peter Bala, Nov 30 2013

Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).

Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).

Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),

phi = (1+sqrt(5))/2 = A001622,

f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)

Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).

Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).

Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - Peter Luschny, Nov 15 2023

EXAMPLE

3.35988566624317755317201130291892717968890513373...

MAPLE

Digits := 120: c := Pi/2 + I*arccsch(2):

Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):

MATHEMATICA

digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Apr 09 2013 *)

First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* Vladimir Reshetnikov, Nov 18 2015 *)

PROG

(PARI) /* Fast computation without splitting into even and odd indices, see the Arndt reference */

lambert2(x, a, S)=

{

/* Return G(x, a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)

computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )

As series in x correct up to order S^2.

We also have G(x, a) = Sum_{n>=1} a^n*x^n/(1-x^n) */

return( sum(n=1, S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );

}

inv_fib_sum(p=1, q=1, S)=

{

/* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)

computed using generalized Lambert series.

Must have p^2+4*q > 0 */

my(al, be);

\\ Note: the q here is -q in the Horadam paper.

\\ The following numerical examples are for p=q=1:

al=1/2*(p+sqrt(p^2+4*q)); \\ == +1.6180339887498...

be=1/2*(p-sqrt(p^2+4*q)); \\ == -0.6180339887498...

return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...

}

default(realprecision, 100);

S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */

inv_fib_sum(1, 1, S) /* 3.3598856... */ /* Joerg Arndt, Jan 30 2011 */

(PARI) suminf(k=1, 1/(fibonacci(k))) \\ Michel Marcus, Feb 19 2019

(Sage) m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # G. C. Greubel, Feb 20 2019

CROSSREFS